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Prognostic Models With Competing Risks
Methods and Application to Coronary Risk Prediction
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Abstract: Clinical decision-making often relies on a subject’s ab-
solute risk of a disease event of interest. However, in a frail
population, competing risk events may preclude the occurrence of
the event of interest. We review competing-risk regression models
with a view toward predictive modeling. We show how measures of
prognostic performance (such as calibration and discrimination) can
be adapted to the competing-risks setting. An example of coronary
heart disease (CHD) prediction in women aged 55–90 years in the
Rotterdam study is used to illustrate the proposed methods, and to
compare the Fine and Gray regression model to 2 alternative
approaches: (1) a standard Cox survival model, which ignores the
competing risk of non-CHD death, and (2) a cause-specific hazards
model, which combines proportional hazards models for the event of
interest and the competing event. The Fine and Gray model and the
cause-specific hazards model perform similarly. However, the stan-
dard Cox model substantially overestimates 10-year risk of CHD; it
classifies 18% of the individuals as high risk (�20%), compared
with only 8% according to the Fine and Gray model. We conclude
that competing risks have to be considered explicitly in frail popu-
lations such as the elderly.

(Epidemiology 2009;20: 000–000)

Clinical decision-making and cost-effectiveness analyses
often rely on a subject’s absolute risk of a disease event

of interest.1 As an example, the National Cholesterol Educa-
tion Program Adult Treatment Panel III2 treatment recom-
mendations for the prevention of coronary heart disease
(CHD) are based on the predicted 10-year risk of CHD.2–4 If
the 10-year risk exceeds 20%, patients are classified as

high-risk and deserve aggressive treatment.2 Hence, the im-
plementation of preventive analytic strategies requires prog-
nostic models that estimate the actual individual risk as
accurately as possible.

In frail populations, such as elderly subjects, other
causes of failure may occur prior to the occurrence of the
disease event of interest. Because such competing risk events
preclude the event of interest and thus the benefit of an
intervention, prognostic models should take competing risk
events into account.

We consider competing risk models and show how
measures for the evaluation of calibration and discrimination
of prognostic survival models can be adapted to the compet-
ing risks setting. An example of CHD risk prediction for
women aged 55–90 years in the Rotterdam study illustrates
how predictive models that properly account for competing
risks can be developed and assessed. Prediction of CHD risk
in the elderly becomes increasingly important because of the
ageing of populations. There are a number of established risk
scores,5–8 but they were not specifically developed for the
ageing population and do not account for the occurrence of
competing non-CHD death. We compare 3 modeling ap-
proaches and show that substantial bias arises if competing
risks are disregarded.

REGRESSION MODELS FOR COMPETING RISKS
DATA

We provide a short overview of the most popular
regression models for competing risks with a view toward
absolute risk prediction. A tutorial for competing risks anal-
yses has recently been published.9

The observable data in competing risks models are
represented by the (possibly censored) time to the event T and
the cause of failure D, ie, either the event of interest (D � 1,
eg, “CHD”) or the competing event (D � 2, eg, “non-CHD
death”). A key quantity is the cumulative incidence function
Ik(t) for the event of interest or the competing event, which
describes the actual (absolute) risk of failing from cause k
until time t: Ik(t) � P(T�t and D � k). The cumulative
incidence functions for the 2 competing events are both
increasing with time t and add up to 1 at time infinity, as
ultimately either of the 2 events is bound to occur., A
nonparametric estimator of the cumulative incidence func-
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tion,9–11 similar to Kaplan-Meier estimates in survival anal-
ysis, provides a useful summary of competing risks data.

Standard Cox Regression Models
In many applications, competing risks have been ig-

nored (ie, patients experiencing competing events were cen-
sored at the time of these events) and standard Cox regression
was applied.5–8 Predicted risks for the event of interest were
then derived by combining hazard ratio estimates with the
estimated baseline hazard function.10 This approach is ade-
quate when competing risks are rare. However, in the pres-
ence of strong competing risks, as with frail or elderly
populations,12 standard survival predictions may substantially
overestimate the absolute risk of the event of interest because
subjects with a competing (and thus censored) event are
treated as if they could experience the event of interest in the
future.9,13,14

Predictions from a standard survival analysis in the
presence of competing risks have been said to refer to the risk
of failing from the event of interest in a virtual world where
the competing risk is absent, ie, to the marginal failure time
distribution of the event of interest.9 This is true only if
censoring due to competing events is independent of the
occurrence of the event of interest,9 an assumption that is often
clinically implausible and cannot be empirically tested.10,15

Moreover, for clinical decision-making in the real world, where
competing risks do occur, actual rather then virtual absolute risks
are often more relevant.13,14

Cause-specific Hazards Models
The cause-specific hazard function for failure cause k is

the instantaneous failure rate of failing at time t of cause k.9,10

We denote the cause-specific hazard functions for the event of
interest and the competing event by �1(t) and �2(t), respectively.
The cumulative incidence function of the event of interest can be
shown to depend on both the cause-specific hazard of the event
of interest and the competing event according to the formula
I1�t� � �0

t �1�s� exp���0
s��1�u� � �2�u��du�ds.10 The cause-

specific hazard modeling approach to absolute risk prediction
therefore corresponds to first developing proportional cause-
specific hazards models for both the event of interest and the
competing event, and then combining them according to this
formula.

Cause-specific hazards models can be estimated by
censoring patients with the respective competing event and
then fitting standard Cox regression models.9 However, the 2
approaches differ in the way absolute risk predictions are
calculated; while standard survival predictions depend only
on the cause-specific hazard of the event of interest (and thus
overestimate absolute risks in the presence of competing
events), proper predictions from cause-specific hazards mod-
els are based on the formula for I1(t) above.

Cause-specific hazard models yield correct absolute
risk estimates but are not without problems. First, they

require modeling not only the event of interest but also the
competing event to obtain valid risk predictions. Second,
covariate effects on the cause-specific hazard of the event of
interest cannot be directly interpreted in terms of the cumu-
lative incidence function, which depends on both cause-
specific hazards.9,16 Third, the formula for I1(t) combining
cause-specific hazards is essentially a black box, ie, it is not
possible to write down a simple formula for risk predictions
given covariate profiles. This complicates the communication
of prediction rules based on cause-specific hazards models.

Fine and Gray Model
Several direct regression models for the cumulative

incidence have been proposed.17–19 We focus on the Fine and
Gray17 model, which is most widely used and allows for a
proportional hazards interpretation. It is a proportional haz-
ards model for the subdistribution hazard of the event of interest,

defined as �� 1�t� :� �
d log(1 � I1�t�)

dt
. Given covariates Z, the

model is of the form �� 1�t�Z� � �� 1,0�t� exp��tZ� where
�� 1,0�t� is the baseline subdistribution hazard for the event
of interest. Solving for the cumulative incidence function
gives the formula:

I1�t�Z� � 1 � exp��exp��tZ� � �
0

t

�� 1,0�s�ds�
where �0

t �� 1,0�s�ds is the cumulative subdistribution baseline
hazard. From this last formula it is straightforward to calcu-
late predicted risks at a specific time point based on the
cumulative subdistribution baseline hazard and the estimates
of the regression coefficients from the Fine and Gray model.
The formula also illustrates the fact that covariate effects can
be interpreted directly in terms of the cumulative incidence
function. If the regression coefficient for a covariate is pos-
itive (ie, a positive subdistribution hazards ratio), higher
values of a covariate imply a constant relative increase of the
subdistribution hazard, and hence a higher predicted cumu-
lative incidence at every time point. The Fine and Gray model
has been called an interpretation-friendly alternative to cause-
specific hazard models.16 We consider it well suited for
predictive modeling in the competing-risk setting. Predictive
models based on the Fine and Gray model can be developed
with essentially the same modeling strategies as for other
regression models.20,21

QUANTIFYING PREDICTIVE ACCURACY OF
COMPETING RISKS MODELS

Calibration
Calibration refers to whether the predicted risks from a

prognostic model agree with the observed risks. This is
particularly important for external validation of a prognostic

balt5/zed-ede/zed-ede/zed00409/zed4460-09a haquer S�3 3/23/09 9:22 Art: EDE08-629

Wolbers et al Epidemiology • Volume 20, Number 4, July 2009

© 2009 Lippincott Williams & Wilkins2



model.22,23 To assess calibration for competing risks models,
the analyst may choose one or several time points and then
plot the actual observed risk, ie, the cumulative incidence
function estimate,9–11 computed within percentiles of pre-
dicted risk, against the average predicted risk within the same
percentiles for the event of interest. In the case of CHD
prediction, one would use the 10-year risk estimates since
these are the basis of current guidelines.2

It was shown in the previous section that the standard
Cox approach overestimates the actual risk (cumulative inci-
dence). If severe, this overestimation is evident when cali-
brated against the cumulative incidence function estimates.
Ironically, if the observed risk is calculated with the standard
Kaplan-Meier estimator, calibration may falsely appear to be
satisfactory because, just as the standard Cox approach, the
Kaplan-Meier estimator overestimates absolute risk in the
presence of competing risks.9,11,13

Discrimination and Reclassification
Intuitively, a prediction model for the event of interest

discriminates well if it assigns high risks to individuals
experiencing the event of interest early, lower risks to indi-
viduals experiencing the event of interest later, and negligible
risk to those never experiencing the event of interest (ie,
individuals with competing events) and to those without
any event during follow-up (censored observations). This
intuition is quantified by our adapted definition of the c
index below.

A c (for concordance) index is a widely used measure
for assessing predictive discrimination for continuous, binary,
and survival-type outcomes.22,24 It can be defined as the
proportion of all evaluable ordered patient pairs for which
predictions and outcomes are concordant. In the context of
competing risks, we propose to define evaluable and concor-
dant patient pairs as follows.

An ordered patient pair is defined as evaluable if the
first patient experiences the event of interest at a time point
when the second patient is still at risk; all other ordered pairs
are nonevaluable. The risk set here is defined as follows. Both
patients who experience the event of interest and patients who
are censored are at risk until the event or the censoring time,
respectively. Individuals who fail from the competing risk
event remain in the risk set and are at risk at any time. The
rationale for this unorthodox definition is that patients expe-
riencing competing events are definitely known to never
experience the event of interest, whereas censored patients
are only known not to experience the event of interest until
censoring. The same definition is inherently used in the Fine
and Gray17 approach.

An evaluable ordered patient pair is defined as concor-
dant if the first patient (ie, the patient experiencing the event
of interest at the time the second patient is still at risk) has the
higher risk prediction than the second. When predicted risks
are identical, 0.5 rather than 1 is added to the count of

concordant pairs.22 If the predictive model is a Fine and Gray
model containing only baseline covariates, the risk ordering
at any time point is the same and given by the linear predictor
of the model. However, for risk predictions based on cause-
specific hazards models or Fine and Gray models that include
covariate-time interactions, the risks have to be compared at
a specific time point, ie, at the time the first patient experi-
ences the event of interest.25

For the Fine and Gray model containing only baseline
covariates, this definition reduces to the standard definition of
the c index for survival data, except that patients experiencing
the competing event are treated as being censored at infinity
to indicate that they will never experience the event of
interest. Without censored data, the c index indicates perfect
concordance (c index � 1) if all patients experiencing the
competing event have lower risk predictions than patients expe-
riencing the event of interest, and event times of patients expe-
riencing the event of interest are perfectly ordered according to
the predicted risks. If the prediction is essentially random with-
out any discriminative ability, the c index is around 0.5.

An alternative measure of prognostic separation in
survival data is measure D, proposed by Royston and Sauer-
brei,26 which can be adapted to the competing risks setting by
replacing Cox regression in their derivation by Fine and Gray
regression. Reclassification methods for comparing new
models to established ones are increasingly used27 and can
also be applied in the presence of competing risks.

ILLUSTRATION: PREDICTION OF CORONARY
HEART DISEASE IN WOMEN AGED 55–90

YEARS OF THE ROTTERDAM STUDY
The Rotterdam study is a prospective, population-based

study among subjects 55 years and older living in a suburb
area of Rotterdam, the Netherlands.28,29 For this analysis, we
selected from the Rotterdam cohort all women aged 55–90
years who were free of CHD or cerebrovascular disease at
baseline, and we included follow-up information until Janu-
ary 2006.

The end point of interest was the time from inclusion in
the cohort until first CHD (event of interest) or death other
than CHD (non-CHD death, competing event). We used a
definition of “hard” CHD consisting of nonfatal myocardial
infarction, coronary interventions, and objectively deter-
mined fatal CHD, including sudden cardiac death, death from
chronic ischemic heart disease, and death due to heart failure
other than hypertensive or nonrheumatic valve disorders.29

Three different regression models were fitted and com-
pared: a Fine and Gray model, a cause-specific hazards
model, and a standard Cox model. Because model selection
was not the aim of this work, we predefined a “traditional”
model similar to existing popular Framingham models5 using
the following covariates: age, treatment for high blood pres-
sure (yes versus no), systolic blood pressure (separate slopes
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depending on whether the patient was on blood pressure
treatment or not), diabetes mellitus, log-transformed total
cholesterol to HDL cholesterol ratio, and smoking status
(current versus never or former smoker) at baseline.

Regression Models
A total of 4144 women were included with a median

follow-up time of 12.8 years (quartiles, 12.0–13.5 years;
completeness of follow-up,30 98%). Median age at baseline
was 69 years (quartiles, 62–77 years); the total number of first
hard CHD events was 465 (243 of them fatal); and 1263
women experienced competing non-CHD death.

Results from the Fine and Gray regression model for
the outcome CHD are displayed in Table 1. The baseline
cumulative subdistribution hazard at 10 years, provided in the
footnote of the table, can be used to make individual risk
predictions. All traditional risk factors (with the exception of
blood pressure in patients on treatment) were strongly asso-
ciated with CHD.

Results of the cause-specific proportional hazards mod-
els for the event of interest and the competing event are
displayed in Table 2. Hazard ratios for the event of interest
were very similar to those of the Fine and Gray model for
covariates that did not affect non-CHD death, ie, blood
pressure lowering medication and systolic blood pressure.16

In contrast, age, diabetes, and smoking status were also
strong predictors for non-CHD death, and cause-specific
hazard ratios for CHD were larger than in the Fine and Gray
model. The cholesterol-to-HDL-cholesterol ratio was in-
versely related to non-CHD death.

Calibration, Reclassification,
and Discrimination

Calibration plots are displayed in the Figure. Calibra-
tion of the Fine and Gray model and the cause-specific

hazards model were good, and the results of the 2 models
were similar to each other. The risk overestimation of the
standard Cox analysis is apparent.

A comparison of the standard Cox model and the Fine
and Gray model with a reclassification table also illustrates
the miscalibration of the standard Cox model (eTable 1,
http://links.lww.com/A939): 12% of the low-risk patients and
37% of the intermediate-risk patients, as classified according
to the Fine and Gray model, were incorrectly reclassified as
intermediate risk and high risk, respectively, using the stan-
dard Cox model. In contrast, the Fine and Gray model and the

TABLE 2. Cause-specific Cox Models For CHD (Event of
Interest) and Competing Non-CHD Death (Competing Risk)

Parameter

Event of
Interest: CHD
HR (95% CI)

Competing
Event: Non-
CHD Death

HR (95% CI)

Age (by �10 years) 2.23 (1.99–2.51) 3.63 (3.37–3.92)

On blood pressure lowering
medication (offset at a systolic
blood pressure of 120 mm Hg)

1.73 (1.28–2.33) 1.17 (0.98–1.41)

Systolic blood pressure (by �10 mm
Hg)—for patients without
medication

1.14 (1.07–1.20) 1.03 (1.00–1.07)

Systolic blood pressure (by �10 mm
Hg)—for patients with medication

1.05 (0.99–1.12) 1.03 (0.99–1.07)

Diabetes mellitus 1.52 (1.19–1.94) 1.29 (1.10–1.52)

log(total cholesterol/HDL) 2.51 (1.85–3.42) 0.64 (0.53–0.78)

Current smoker 1.96 (1.56–2.48) 1.91 (1.65–2.22)

FIGURE. Calibration Plot of the 3 Regression Models for the
prediction of CHD in 4144 women in the Rotterdam Study
aged 55–90 years and free of CHD at baseline.

TABLE 1. Fine and Gray17 Regression Model for Predicting
CHD Based on 4144 Women in the Rotterdam Study Aged
55–90 Years and Free of CHD at Baseline

Parameter sHR (95% CI)

Age (by �10 years) 1.64 (1.47–1.82)

On blood pressure lowering medication (offset at
a systolic blood pressure of 120 mm Hg)

1.69 (1.26–2.25)

Systolic blood pressure (by �10 mm Hg)—for
patients without medication

1.13 (1.07–1.20)

Systolic blood pressure (by �10 mm Hg)—for
patients with medication

1.05 (0.99–1.12)

Diabetes mellitus 1.38 (1.07–1.79)

log(total cholesterol/HDL) 2.72 (2.01–3.70)

Current smoker 1.71 (1.36–2.15)

Baseline cumulative subdistribution hazard at 10 years is 0.0302. Baseline refers to
a woman of age 60 with a systolic blood pressure of 120, a log(Cholesterol/HDL) of
1.61 (� log(5)) who is nonsmoking, without blood-pressure lowering medication, and
without diabetes.

sHR indicates subdistribution hazard ratio; CI, confidence interval.
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cause-specific model are more similar (with some advantage
for the Fine and Gray model) and classify 94% of women into
the same risk strata (eTable 2, http://links.lww.com/A939).
Discrimination, as measured by the adapted c index and
Royston and Sauerbrei’s D, is virtually identical for all 3
models (Table 3).

DISCUSSION
In this comparison of competing risks regression mod-

els, we find advantages of the Fine and Gray17 model, which
provides direct estimates of absolute risks for developing
predictive models. We show how established measures for
assessing calibration and discrimination, such as the c index
can be adapted to the context of competing risks. The pro-
posed methods have been applied to the problem of risk
prediction of CHD in older women based on data from the
Rotterdam study.

Importance of Absolute Risks
In line with others,13,14,31 we regard the absolute risk of

the event of interest as crucial for medical decision-making in
the competing risks setting. For example, in a subpopulation
with a 10-year absolute CHD risk of 20%, 1 in 5 individuals
may profit within 10 years from aggressive treatment that
lowers the patients’ risk of CHD but does not affect the
competing risk.

In some instances, considerations of the absolute risk of
competing events may also be important. As an example,
consider 2 women with the same 10-year CHD risk of 20%
and a risk of competing non-CHD death of 20% or 60%,
respectively. Although both patients have the same chance of
benefiting from CHD-specific aggressive treatment, a clini-
cian may be somewhat less inclined to initiate a costly
treatment in the second patient with a much higher morbidity
and mortality for the competing event (eg, advanced stage
chronic obstruction pulmonary disease or known cancer). She
would likely gain fewer years of life even if CHD could be
prevented.

Comparison of Different Competing Risks
Regression Models

Our example illustrates the overestimation of actual
CHD risk if the competing risk is ignored, ie, if Cox regres-

sion analysis is applied in a naive way. It is well-known that
Kaplan-Meier curves overestimate absolute risk in the pres-
ence of competing risks (eg,9,13) but it appears to be less
well-known that the same holds for Cox regression.

In contrast, both the cause-specific hazards model and
the Fine and Gray model performed similarly well in our
example. Other comparisons between Fine and Gray and
cause-specific models have investigated differences in param-
eter estimates if both are applied to the same data and their
interpretation.16,32

Measures of Accuracy
We adapted calibration plots, the c index, Royston and

Sauerbrei’s measure D, and reclassification methods to the
competing risks context. The c index was discussed because
it is a simple and widely used measure of discrimination that
is unaffected by systematic calibration problems. Our adapted
c index accounts for the fact that competing events prevent
the occurrence of the event of interest, and in situations with
strong competing risks this can have a substantial impact: In
our example, a naive calculation of the traditional c index
would falsely suggest better predictability of the event of
interest (naive c � 0.75 versus adapted c � 0.70 for the
standard Cox model). However, controversial issues have
been raised that relate to the c index in general and merit
further discussion.

First, by conditioning on the events being observed, the
c index depends on the censoring distribution.33 This is a
minor issue in our case study, in which all patients have a
similar follow-up duration and loss to follow-up is minimal.
However, it could be more problematic in other situations,
especially when the censoring distribution depends heavily
on covariates. Second, the c index is relatively insensitive to
small but potentially clinically-relevant changes in predictive
accuracy.34,35 This could be the reason why the c index, but
not calibration, is virtually identical for all 3 models in our
case study. An alternative that directly compares the clinical
impact of different models are reclassification meth-
ods.27,34,35 Third, for actual clinical decision making, ap-
proaches that take application-specific loss functions into
account may be more relevant than the c index. Gail and
Pfeiffer31 have written a useful review of decision-theoretical

TABLE 3. Discriminatory Power of the 3 CHD Prediction Models: Adapted c Index and Royston
and Sauerbrei’s D for Competing Risk Data With 95% CI

Fine and Gray Model
Index (95% CI)

Standard Cox Model
Index (95% CI)

Cause-specific Hazards Model
Index (95% CI)

c indexa 0.70 (0.68–0.73) 0.70 (0.68–0.73) 0.70 (0.68–0.73)

Royston and Sauerbrei’s Da 1.17 (1.02–1.32) 1.15 (1.00–1.30) 1.17b (1.02–1.32)

aAdapted versions for competing risk data.
bApproximate version based on predicted 10-year CHD risk. Note that, unlike for Fine and Gray and standard Cox models, the risk

ordering of patients may differ at different follow-up time points for cause-specific hazards models.
CIs for the c index are basic bootstrap confidence intervals.
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approaches for models of absolute risks. There is no univer-
sally accepted and perfect summary measure that covers all
aspects of model performance. Therefore, several measures
should be calculated in applications. We encourage the ad-
aptation of additional measures for survival data26,36,37 to
competing risks.

Clinical Implications for CHD Risk Prediction
As the population ages, CHD risk prediction in older

subjects is a challenge, and our risk model for older women
has clinical implications. First, established risk models5–8

may extrapolate poorly to older women and substantially
overestimate actual risks. Second, CHD risk prediction be-
comes more difficult with the growing incidence of compet-
ing events.

In our example, overestimation of the standard Cox
model was particularly severe in high-risk strata. As age is a
strong predictor of CHD risk, these high-risk strata contain a
large fraction of relatively old patients. At the same time, the
mortality due to reasons other than CHD increases even more
dramatically with increasing age, thus explaining this finding.
Studying calibration according to age strata revealed that the
standard Cox model calibrates reasonably well up to an age of
about 75 years, ie, the age range for which most well-known
CHD risk prediction models, which ignored competing risks,
were developed.5–8

The discriminative power of our model (adapted c
index � 0.70) was substantially lower compared with CHD
risk models in younger women among whom it has been
reported5 as 0.77, based on the same covariate information
and a similar follow-up duration. The c index in younger
women5 was not adapted for competing risks, but this should
have minimal impact because this population is less frail and
the incidence of competing events should be much lower.
Assuming comparability of the 2 cohorts otherwise, the
difference suggests that CHD risk prediction is more difficult
in our elderly population. This conclusion is further sup-
ported by the observation that several of the risk factors for
CHD (such as age and smoking) are equally strong or even
stronger risk factors for competing non-CHD death. Even
though smoking is a causal risk factor of CHD, it may be a
less useful prognostic predictor for identifying future CHD
cases in older women because CHD is also more often
precluded by competing non-CHD death in smokers (eg, due
to lung cancer or chronic obstructive pulmonary disease)
compared with nonsmokers. For better case identification in
the presence of competing risks, strong CHD-specific predic-
tors are required, as exemplified by the cholesterol to HDL
cholesterol ratio. A high cholesterol to HDL cholesterol ratio
was inversely associated with the cause-specific hazard for
non-CHD death and may be explained, in part, by a poor
nutritional status in patients with a low ratio.38 The prognos-
tic value of the cholesterol to HDL cholesterol ratio is
therefore of increasing importance in older women.

As the focus of our study was methodologic, we re-
stricted the application to women and basic risk factors. The
methods, however, are equally valid for men or for any
prognostic model in the competing risks setting where the
focus is on one event of interest. In other settings, all
competing events may be of similar importance, and in the
future models for all competing events jointly and corre-
sponding accuracy criteria might expand into medical deci-
sion-making.

We encourage using competing risks models as a stan-
dard tool for developing predictive models in frail popula-
tions where a relevant proportion of patients do not experi-
ence the event of interest because they previously fail from a
competing event. Our study illustrates how such models may
be developed and their prognostic accuracy assessed. In the
presence of competing risks, Kaplan-Meier estimates and
naive applications of standard Cox regression overestimate
the actual incidence of the event of interest and may lead to
inappropriate risk stratification.
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APPENDIX
The statistical software R39 was used for all analyses. For

cause-specific hazards models, hazards were estimated using the
survival library and the cumulative incidence function was
calculated with the R function CumInc, which is part of the
supportive code for the tutorial9 and available at: www.msbi.nl/
multistate. Fine and Gray regression models were fitted with the
contributed R package cmprsk.40 The first author of the present
publication has written a formula interface for Fine and Gray
regression as well as several other utility functions, including a
function to calculate the c index and corresponding bootstrap
confidence intervals. These functions are available on request.
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